
Journal of Computer Networks, 2014, Vol. 2, No. 2, 10-17
Available online at http://pubs.sciepub.com/jcn/2/2/2
© Science and Education Publishing
DOI:10.12691/jcn-2-2-2

Parallelization of Integer Squaring Algorithms with
Delayed Carry

Korchenko Oleksandr, Kovtun Vladislav, Okhrimenko Andrew*

Academic Department of IT-Security, National Aviation University, Kiev, Ukraine
*Corresponding author: andrew.okhrimenko@gmail.com

Received May 30, 2014; Revised June 02, 2014; Accepted June 03, 2014

Abstract Increasing amounts of information that needs to be protected put in claims specific requirements for
information security systems. The main goal of this paper is to find ways to increase performance of cryptographic
transformation with public key by increasing performance of integers squaring. Authors use delayed carry
mechanism and approaches of effective parallelization for Comba multiplication algorithm, which was previously
proposed by authors. They use the idea of carries accumulation by addition products of multiplying the relevant
machine words in columns. As a result, it became possible to perform addition of such products in the column
independently of each other. However, independent accumulation of products and carries require correction of the
intermediate results to account for the accumulated carries. Due to the independence of accumulation in the columns,
it became possible to parallelize the process of products accumulation that allowed formulating several approaches.
In this paper received theoretical estimates of the computational complexity for proposed squaring algorithms.
Software implementations of algorithms in C++ allowed receiving practical results of the performance, which are
not contrary to theoretical estimates. The authors first proposed applying the method of delayed carry and
parallelization techniques for squaring algorithms, which was previously proposed for integers multiplication.

Keywords: squaring, multiplication, integers, delayed carry, parallelization

Cite This Article: Korchenko Oleksandr, Kovtun Vladislav, and Okhrimenko Andrew, “Parallelization of
Integer Squaring Algorithms with Delayed Carry.” Journal of Computer Networks, vol. 2, no. 2 (2014): 10-17.
doi: 10.12691/jcn-2-2-2.

1. Introduction
Cryptographic transformation with public key (CTPK)

are the basis for most modern cryptosystems. Increasing
amounts of information that needs to be protected, makes
specific demands for CTPK. Multiplicative operations
[2,3], such as multiplication and squaring of integers, are
the most frequently used in CTPK. One of the
performance increasing approaches in CTPK is increasing
the productivity of basic operations, such as multiplication,
squaring, modular reduction and multiplicative inversion.
Performance increasing approaches in CTPK by
increasing the productivity of integer multiplication were
reviewed in [4,5,6]. The main goal of this paper is to find
ways of increasing performance of CTPK, by increasing
productivity of squaring integers, using the delayed carry
mechanism [5,6] and efficient parallelization approaches
[4].

Squaring is a special case of multiplication where both
multipliers are equal [1,3]. Show features of multiplication
and squaring by considering "schoolbook" multiplication
of two integers 123 and 456, Figure 1.

Figure 1 shows that to calculate the product of two
integers 123 and 456, it should complete 9 unique
multiplication operations. Squaring using "schoolbook"
multiplication allows some optimizations. Multiply

integer 123 by itself, using "schoolbook" multiplication
Figure 2.

Figure 1. "Schoolbook" multiplication of two integers

Figure 2. "Schoolbook" multiplication integer by itself

Figure 2 shows how to multiply decimals in a different
order, such as products in rows 0 and 2 in column 2 (3 * 1
= 1 * 3), products in rows 0 and 1 in column 1 (3 * 2 = 2 *
3) and products in rows 1 and 2 in column 3: (1 * 2 = 2 *
1). Therefore, for squaring for n-digit number, there are

only ()2 2n n+ unique multiplications required (2n

operations required for multiplication in common case).

11 Journal of Computer Networks

Let x be integer being squared, а kx – k -th term of x .
It is easy to notice features:

1. In row k the product in column 2k has a 2
kx term in

it. In Figure 2 it 3 * 3, 2 * 2, 1 * 1.
2. Every non-square term of a column will appear twice

(product in column j in row k , where 2j k≠ has a
pair). In Figure 2 it 3 * 1 = 1 * 3, 3 * 2 = 2 * 3 and 1
* 2 = 2 * 1. Every odd column is made-up entirely of
product pairs.

3. For row k , such as 0k ≠ and 1k n≠ − , the first
unique product that is not a square, is located in the
column 2 1k + . In Figure 2 it 2 * 1.

2. Multiplication Algorithm Modified Comba
In [5] proposed generalized modified algorithm Comba

for integer multiplication – Modified Comba (MC), which
uses the idea of delayed carry. The basis of the algorithm
is loops (p.2 and p.3), and inner loops (p.2.1 and p.3.1). At
the lowest level of the hierarchy, in loops p.2.1, p.3.1 there
are multiplication and accumulation of delayed carry.
Accumulated carry is taken into account in the final
iterations of the loops p.2 and p.3. Using 2w-bit variables
for storing w-bit variables eliminates the carry accounting
of w-bit variable after each arithmetic operation. Carry
accumulated in the higher part of the 2w-bit variable and
is taken into account when needed, Figure 3. The
generalized algorithm MC [5] for the w-bit systems is
given below.

Multiplication algorithm 1. Modified Comba
INPUT: (),a b p∈GF ,

2
log wn a= , 2 1nk n= −

OUTPUT: с a b= ⋅

1. ()2
0 0wr ← , ()2

1 0wr ← , ()2
2 0wr ← .

2. For 0k ← , k n< , k + + do
2.1. For 0i ← , j k← , i k≤ , i + + , j − − do

2.1.1. ()() () ()2 w ww
i juv a b← ⋅ .

2.1.2. () () ()2 2
0 0

w w wr r v← + , () () ()2 2
1 1

w w wr r u← +

2.2. () ()
()

()()2 2 2
1 1 0hiw w w

wr r r← + ,

() ()
()

()()2 2 2
2 2 1hiw w w

wr r r← +

2.3. ()
()

()()2
0loww w

wkc r← , ()
()

()()2 2
0 1loww w

wr r← ,

()
()

()()2 2
1 2loww w

wr r← , ()2
2 0wr ← .

3. For k n← , 1l ← , k nk< , k + + , l + + do
3.1. For i l← , j k l← − , i n< , i + + , j − − do

3.1.1. ()() () ()2 w ww
i juv a b← ⋅ .

3.1.2. () () ()2 2
0 0

w w wr r v← + , () () ()2 2
1 1

w w wr r u← +

3.2. () ()
()

()()2 2 2
1 1 0hiw w w

wr r r← + ,

() ()
()

()()2 2 2
22 2 1hiw w wr r r← +

3.3. ()
()

()()2
0loww w

wkc r← , ()
()

()()2 2
0 1loww w

wr r← ,

()
()

()()2 2
1 2loww w

wr r← , ()2
2 0wr ← .

4. ()
()

()()2
2 0loww w

nkc r← .

5. Return ()c .
The computational complexity of the MC algorithm:

 3 12 2n
n

MC w w wsqr mul addI n I I +

+= + ,

where n – number of w-bit machine words required to
store the multiplier of given size, w

mulI – a multiplication

operation for w-bit words, 2w w
addI + – an addition operation

for 2w-bit and w-bit words. Assignment operations do not
take into account in computational complexity of the
algorithms.

Using the idea of delayed carry it can independently
produce addition of multiplication results corresponding
by columns, that enables to perform the accumulation of
sum of high and least significant bit in separate parallel
threads. However, it is necessary to make an adjustment
(account carry) ()1 1 0Hir r r= + , ()2 2 1Hir r r= + and set

result ()0Lowic r= after sum accumulation in each
thread. Figure 3 and Figure 4 is a graphical interpretation
of the MC algorithm, for n=3, where well-defined results
addition for corresponding products in columns.

a2 a1 a0

b2 b1 b0

Hi(a0*b0) Lo(a0*b0)

Hi(a2*b0) Lo(a2*b0)

c2 c1 c0

a

b

c

Hi(a1*b0) Lo(a1*b0)

Hi(a0*b1) Lo(a0*b1)

Hi(a0*b2) Lo(a0*b2)

Hi(a1*b1) Lo(a1*b1)

r0r1

r2

r0r1

r0r1

r2

r0r1

r0r1

r0r1

r2

Figure 3. Graphical interpretation of loop 2 in MC algorithm

c3c4c5

Hi(a2*b1) Lo(a2*b1)

Hi(a1*b2) Lo(a1*b2)

Hi(a2*b2) Lo(a2*b2)

r0r1

r2

r0r1

r0r1

r2

c

Figure 4. Graphical interpretation of loop 3 in MC algorithm

3. Squaring Algorithms

3.1. Squaring algorithm Modified Comba SQR

 Journal of Computer Networks 12

Using delayed carry mechanism [5,6] and approaches to
parallelization [4,5], were offer three squaring algorithms
that take account the above features. Consider squaring
features, the MC algorithm was modified in inner loops of
delayed carry accumulation (p.2.1 and p.3.1), and added
an additional check to avoid duplication in the sum
accumulation (p.2.1.2 and p.3.1.2).

Modified Comba SQR (MCSQR) is squaring algorithm
for w-bit machine words, based on multiplication
algorithm MC [4,5,6].

Squaring algorithm 1. Modified Comba SQR.

INPUT: ()a p∈GF ,
2

log wn a= , 2 1nk n= −

OUTPUT:
2с a=

1. ()2
0 0wr ← , ()2

1 0wr ← , ()2
2 0wr ← .

2. For 0k ← , k n< , k + + do
2.1. For 0i ← , j k← , i j≤ , i + + , j − − do

2.1.1. ()() () ()22 w w w
i ju a a← ⋅ .

2.1.2. if ()i j< then () () ()()2 2
0 0 1w w wr r u← + << ,

() () ()() () ()()2 2
1 1 1 1w w w wr r u or u w

← + << >> −

;

else () () ()2 2
0 0

w w wr r u← + , () () ()2 2
1 1

w w wr r u← +

2.2. () ()
()

()()2 2 2
1 1 0hiw w w

wr r r← + ,

() ()
()

()()2 2 2
2 2 1hiw w w

wr r r← +

2.3. ()
()

()()2
0loww w

wkc r← , ()
()

()()2 2
0 1loww w

wr r← ,

()
()

()()2 2
1 2loww w

wr r← , ()2
2 0wr ← .

3. For k n← , 1l ← , k nk< , k + + , l + + do
3.1. For i l← , j k l← − , i j≤ , i + + , j − − do

3.1.1. ()() () ()22 w w w
i ju a a← ⋅ .

3.1.2. if ()i j< then () () ()()2 2
0 0 1w w wr r u← + << ,

() () ()() () ()()2 2
1 1 1 1w w w wr r u or u w

← + << >> −

;

else () () ()2 2
0 0

w w wr r u← + , () () ()2 2
1 1

w w wr r u← +

3.2. () ()
()

()()2 2 2
1 1 0hiw w w

wr r r← + ,

() ()
()

()()2 2 2
22 2 1hiw w wr r r← +

3.3. ()
()

()()2
0loww w

wkc r← , ()
()

()()2 2
0 1loww w

wr r← ,

()
()

()()2 2
1 2loww w

wr r← , ()2
2 0wr ← .

4. ()
()

()()2
2 0loww w

nkc r← .

5. Return ()c .
The computational complexity of the MCSQR

algorithm:

 2 23 1 13
2

MCSQR w w w w
sqr mul add shift

n nI n I I I
n n

+ + − = + +

where n – number of w-bit machine words required to
store the multiplier of given size, w

mulI – a multiplication

operation for w-bit words, 2w w
addI + – an addition operation

for 2w-bit and w-bit words, w
shiftI – a word shift operation.

Assignment operations do not take into account in
computational complexity of the algorithms.

The evaluation results of computational complexity of
MCSQR for different bit length multipliers are shown in
Table 1 and Table 2 (MUL, ADD and SHIFT – amount of
required multiplication, addition and shift operations).

Table 1. The number of operations for MCSQR (w=32 bit)

BIT SIZE
MCSQR, w=32 bit

MUL ADD SHIFT
128 16 52 18
256 64 200 84
512 256 784 360
1024 1024 3104 1488
2048 4096 12352 6048
3072 9216 27744 13680
4096 16384 49280 24384
6144 36864 110784 55008
8192 65536 196864 97920

12288 147456 442752 220608
16384 262144 786944 392448

Table 2. The number of operations for MCSQR (w=64 bit)

BIT SIZE
MCSQR, w=64 bit

MUL ADD SHIFT
128 4 14 3
256 16 52 18
512 64 200 84
1024 256 784 360
2048 1024 3104 1488
3072 2304 6960 3384
4096 4096 12352 6048
6144 9216 27744 13680
8192 16384 49280 24384

12288 36864 110784 55008
16384 65536 196864 97920

Table 2 shows that using 64-bit machine words in
MCSQR algorithm can significantly reduce the number of
necessary operations (including reducing the number of
multiplications by 4 times).

3.2. Squaring Algorithms with Parallelization
Techniques

The delayed carry mechanism allows formulating
several approaches to the MCSQR parallelization:
• Parallel execution (in two parallel threads) of loops

in the step 2 and 3 with further final result correction.
• Parallel execution (number of parallel threads) of

iterations in loops in step 2 and 3 with further
intermediate results (from parallel threads) merging.

3.2.1. Algorithm Modified Comba SQR 2x
Algorithm with two parallel processing threads and

paralleling features of the MCSQR algorithm was

13 Journal of Computer Networks

proposed. Modified Comba SQR 2x (MCSQR2x) is
squaring algorithm for w-bit platforms, based on
multiplication algorithm Modified Comba 2x (MC2x) [4,5]
with two parallel processing threads.

Squaring algorithm 2. Modified Comba SQR 2x
with two parallel processing threads:

INPUT: ()a p∈GF ,
2

log wn a= , 2 1nk n= −

OUTPUT:
2с a=

1. #pragma omp parallel sections begin
1.1. #pragma omp section begin

1.1.1. ()2
0 0wrl ← , ()2

1 0wrl ← , ()2
2 0wrl ← .

1.1.2. For 0k ← , k n< , k + + do
1.1.2.1. For 0i ← , j k← , i j≤ , i + + , j − − do

1.1.2.1.1. ()() ()2 ()2 w w w
i ju a a← ⋅ .

1.1.2.1.2. if ()i j< then () () ()()2 2
0 0 1w w wrl rl u← + << ,

() () ()() () ()()2 2
1 1 1 1w w w wrl rl u or u w

← + << >> −

;

else () () ()2 2
0 0

w w wrl rl u← + , () () ()2 2
1 1

w w wrl rl u← +

1.1.2.2. () ()
()

()()2 2 2
1 1 0hiw w w

wrl rl rl← + ,

() ()
()

()()2 2 2
2 2 1hiw w w

wrl rl rl← +

1.1.2.3. ()
()

()()2
0loww w

wkc rl← ,

()
()

()()2 2
0 1loww w

wrl rl← ,

()
()

()()2 2
1 2loww w

wrl rl← , ()2
2 0wrl ← .

1.1.3. () ()2 2
0 0

w wr rl← .
#pragma omp section end
1.2. #pragma omp section begin

1.2.1. ()2
0 0wrl ← , ()2

1 0wrl ← , ()2
2 0wrl ← .

1.2.2. For k n← , 1l ← , k nk< , k + + , l + + do
1.2.2.1. For i l← , 1j n← − , i j≤ , i + + , j − − do

1.2.2.1.1. ()() ()2 ()2 w w w
i ju a a← ⋅ .

1.2.2.1.2. if ()i j< then () () ()()2 2
0 0 1w w wrl rl u← + << ,

() () ()() () ()()2 2
1 1 1 1w w w wrl rl u or u w

← + << >> −

;

else () () ()2 2
0 0

w w wrl rl u← + , () () ()2 2
1 1

w w wrl rl u← +

1.2.2.2. () ()
()

()()2 2 2
1 1 0hiw w w

wrl rl rl← + ,

() ()
()

()()2 2 2
2 2 1hiw w w

wrl rl rl← +

1.2.2.3. ()
()

()()2
0loww w

wkc rl← ,

()
()

()()2 2
0 1loww w

wrl rl← ,

()
()

()()2 2
1 2loww w

wrl rl← , ()2
2 0wrl ← .

#pragma omp section end
#pragma omp parallel sections end
2. For k n← , k nk< , k + + do

2.1. () () ()2 2
0 0

w w w
kr r c← + .

2.2. ()
()

()()2
0loww w

wkc r← .

2.3. ()
()() ()

()()2 2
0 0low hiw w

w wr r← .

3. () ()
()

()()2
0loww w w

wnk nkc c r← + .

4. Return ()c .
The computational complexity of the MCSQR2x

algorithm:

2

2

2
2

12
2

max 2 ,
13

2

MCSQR x
sqr

w w w
mul add

w wn
add

w
shift

I

nI I
n

n I
n I

n

+

+

 + +
 = + − +

2

2
2

2
2

12
2

2
13

2

w w w
mul add

w wn
add

w
shift

w w wn
add add

nI I
n

n I
n I

n

I I

+

+

+

 + +
 + − +

+ +

where n – number of w-bit machine words required to
store the multiplier of given size, w

mulI – a multiplication

operation for w-bit words, 2w w
addI + – an addition operation

for 2w-bit and w-bit words, w
shiftI – a shift operation.

Assignment operations do not take into account in
computational complexity of the algorithms.

The evaluation results of computational complexity of
MCSQR2x for different bit length multipliers are shown
in Table 3 and Table 4 (MUL, ADD and SHIFT – amount
of required multiplication, addition and shift operations):

Table 3. The number of operations for MCSQR2X (w=32 bit)

BIT SIZE
MCSQR2x, w=32 bit

MUL ADD SHIFT

128 8 19 9

256 32 53 42

512 128 169 180

1024 512 593 744

2048 2048 2209 3024

3072 4608 4849 6840

4096 8192 8513 12192

6144 18432 18913 27504

8192 32768 33409 48960

12288 73728 74689 110304

16384 131072 132353 196224

 Journal of Computer Networks 14

Table 4. The number of operations for MCSQR2x (w=64 bit)

BIT SIZE
MCSQR2x, w=64 bit

MUL ADD SHIFT
128 2 8 2
256 8 19 9
512 32 53 42
1024 128 169 180
2048 512 593 744
3072 1152 1273 1692
4096 2048 2209 3024
6144 4608 4849 6840
8192 8192 8513 12192

12288 18432 18913 27504
16384 32768 33409 48960

3.2.2. Algorithm Modified Comba SQR Mx
Modified Comba SQR Mx (MCSQRMx) is the

squaring algorithm for w-bit platforms, based on
multiplication algorithm Modified Comba Mx (MCMx)
with multiple parallel processing threads [4,5] :

Squaring algorithm 3. Modified Comba SQR Mx
with multiple parallel processing threads
INPUT: ()a p∈GF ,

2
log wn a= , 2 1nk n= −

OUTPUT:
2с a=

1. 1l ← .

2. Arrays ()0 w
ir and ()1 w

ir , 0,i nk= .
3. #pragma omp parallel begin
4. #pragma omp for nowait begin
4.1. For 0k ← , k n< , k + + do

4.1.1. ()
0 0wrl ← , ()

1 0wrl ← .
4.1.2. For 0i ← , j k← , i j≤ , i + + , j − − do

4.1.2.1. ()() ()2 ()2 w w w
i ju a a← ⋅ .

4.1.2.2. if ()i j< then () () ()()2 2
0 0 1w w wrl rl u← + << ,

() () ()() () ()()2 2
1 1 1 1w w w wrl rl u or u w

← + << >> −

;

else () () ()2 2
0 0

w w wrl rl u← + , () () ()2 2
1 1

w w wrl rl u← +

4.1.3. () ()2 2
00 w w

kr rl← , () ()2 2
11 w w

kr rl←

#pragma omp for end
5. #pragma omp for nowait begin
5.1. For k n← , k nk< , k + + do

5.1.1. ()2
0 0wrl ← , ()2

1 0wrl ← .
5.1.2. For i l← , 1j n← − , i j≤ , i + + , j − − do

5.1.2.1. ()() () ()22 w w w
i ju a a← ⋅ .

5.1.2.2. if ()i j< then () () ()()2 2
0 0 1w w wrl rl u← + << ,

() () ()() () ()()2 2
1 1 1 1w w w wrl rl u or u w

← + << >> −

;

else () () ()2 2
0 0

w w wrl rl u← + , () () ()2 2
1 1

w w wrl rl u← +

5.1.3. () ()2 2
00 w w

kr rl← , () ()2 2
11 w w

kr rl←

5.1.4. l + + .
#pragma omp for end
#pragma omp parallel end

6. ()2 0wr ←

7. For 0k ← , k nk< , k + + do

7.1. () ()2 2
0 0w w

krl r← .

7.2. () () ()2 2 2
0 0

w w wrl rl r← + .

7.3. ()
()

()()2
0loww w

wkc rl← .

7.4. () ()
()

()()2 2 2
01 hiw w w

wkr r rl← + .

8. ()
()

()()2loww w
wnkc r← .

9. Return ()c .
The computational complexity of the MCSQRMx

algorithm:

()

2

2

2

2
2

12
2

13
2

12
2

2 1 3
13

2

w w w
mul add

MCSQRMx n n
mul Z

w
shift

w w w
mul add

w wn n
addZ

w
shift

nI I
n

I
n I

n

nI I
n

n I
n I

n

+

+

+

 + +
 = − +

 + +

 + + − − +

where Z – parallel threads count, n – number of w-bit
machine words required to store the multiplier of given
size, w

mulI – a multiplication operation for w-bit words,
2w w
addI + – an addition operation for 2w-bit and w-bit words,
w
shiftI – a word shift operation. Assignment operations do

not take into account in computational complexity of the
algorithms.

The evaluation results of computational complexity of
MCSQR2x for different bit length multipliers are shown
in Table 5 and Table 6 for Z=4 (MUL, ADD and SHIFT –
amount of required multiplication, addition and shift
operations):

Table 5. The number of operations for MCSQRMX (w=32 bit)

BIT SIZE
MCSQRMx, w=32 bit

MUL ADD SHIFT
128 4 26 5
256 16 63 21
512 64 161 90
1024 256 453 372
2048 1024 1421 1512
3072 2304 2901 3420
4096 4096 4893 6096
6144 9216 10413 13752
8192 16384 17981 24480

12288 36864 39261 55152
16384 65536 68733 98112

15 Journal of Computer Networks

Table 6. The number of operations for MCSQRMx (w=64 bit)

BIT SIZE
MCSQRMx, w=64 bit

MUL ADD SHIFT

128 1 11 1

256 4 26 5

512 16 63 21

1024 64 161 90

2048 256 453 372

3072 576 873 846

4096 1024 1421 1512

6144 2304 2901 3420

8192 4096 4893 6096

12288 9216 10413 13752

16384 16384 17981 24480

Theoretical calculations show that the parallel squaring
algorithms have a lower computational complexity,
primarily due to the parallel execution of the elementary
operations of addition and multiplication. Furthermore,
the use of 64-bit machine words reduces the number of
multiplications by 4 times.

4. Field Research
Squaring algorithms MCSQR, MCSQR2x and

MCSQRMx as previously proposed algorithms for
multiplication MC, MC2x and MCMx (Kovtun et al.,
2012), (Kovtun and Okhrimenko, 2012), (Kovtun and
Okhrimenko, 2013) have been implemented in software in
C++ using the Intel C + + Compiler XE 13. The proposed
algorithms have been implemented for 32- and 64-bit
platforms. Measurements were performed on a computer
running Microsoft Windows 7 Ultimate x64 SP1 and the
processor Intel Core i5-3570 (6M Cache, 3.40 GHz) with
four physical cores. For multiplication of two 64-bit
integers, have been used the built-in compiler intrinsic
function _umul128, (128-bit result of the multiplication is
represented as an array of 64-bit words). Comparison of
the results occurred by comparing the average time of
multiplication operations in software implementation MC,
MC2x and MCMx and the proposed algorithms squaring
MCSQR, MCSQR2x and MCSQRMx, for 1 million
iterations. The experimental results for 32-bit platforms
are shown in Table 7 and Table 8.

Table 7. The experimental results for squaring (w=32 bit)
BIT SIZE MCSQR, ms MCSQR2x, ms MCSQRMx, ms

128 59 681 726

256 147 702 750

512 495 858 821

1024 1722 1576 936

2048 6490 4056 1432

3072 14305 8143 2196

4096 24992 13688 3023

6144 54928 29593 5519

8192 97266 51542 7438

12288 214921 111930 13960

16384 378488 196768 21359

Table 8. The experimental results for multiplication (w=32 bit)
BIT SIZE MC, ms MC2x, ms MCMx, ms

128 62 723 768

256 156 749 796

512 530 936 874

1024 1919 2028 999

2048 7394 5772 1513

3072 16349 12028 2340

4096 28673 20560 3245

6144 63133 44569 5938

8192 110979 78842 7878

12288 246730 174174 14708

16384 435943 306416 23306

It is proposed to normalize the results by dividing the
results of MC, MC2x and MCMx to results MCSQR,
MCSQR2x and MCSQRMx. The normalized results are
shown in Table 9.

Table 9. Normalized results of experiments for w = 32 bit
BIT

SIZE
MC/

MCSQR
MC2x/

MCSQR2x
MCMx/

MCSQRMx
128 1,051 1,062 1,058

256 1,061 1,067 1,061
512 1,071 1,091 1,065

1024 1,114 1,287 1,067
2048 1,139 1,423 1,057

3072 1,143 1,477 1,066
4096 1,147 1,502 1,073
6144 1,149 1,506 1,076

8192 1,141 1,530 1,059
12288 1,148 1,556 1,054

16384 1,152 1,557 1,091
Table 9 shows that all proposed squaring algorithms for

32-bit platforms are effectively than multiplying
algorithms. Single-threaded algorithm MCSQR is more
efficient than algorithm MC by 5%, and advantage
increases to 15% with the increase of the multipliers bit
size. The algorithm MCSQR2x is more efficient than
algorithm MC2x by 6%, and advantage increases to 56%
with the increase of the multipliers bit size. Multi-threaded
algorithm MCSQRMx is more effectively than algorithm
MCMx by 6%, and advantage increases to 9% with the
increase of the multipliers bit size.

The experimental results for 64-bit platforms are shown
in Table 10 and Table 11.

Table 10. The experimental results for squaring (w=64 bit)
BIT SIZE MCSQR, ms MCSQR2x, ms MCSQRMx, ms

128 14 628 687
256 46 687 721
512 150 699 780
1024 483 889 952
2048 1736 1541 1560
3072 3776 2816 2690
4096 6521 4112 4009
6144 14521 8549 8205
8192 25490 14430 13759

12288 56379 31794 29718
16384 99232 54507 51651

 Journal of Computer Networks 16

Table 11. The experimental results for multiplication (w=64 bit)
BIT SIZE MC, ms MC2x, ms MCMx, ms

128 15 818 903

256 50 896 949
512 163 924 1070

1024 593 1184 1293
2048 2347 2053 2224
3072 5175 3801 3810

4096 8830 5600 5507
6144 19532 11590 11357

8192 34335 19858 18752
12288 76674 44991 40435
16384 135252 77127 71682

It is proposed to normalize the results for 64-bit
platforms by dividing the results of MC, MC2x and
MCMx to results MCSQR, MCSQR2x and MCSQRMx
too. The normalized results are shown in Table 12.

Table 12. Normalized results of experiments for w = 64 bit
BIT

SIZE
MC/

MCSQR
MC2x/

MCSQR2x
MCMx/

MCSQRMx
128 1,071 1,303 1,314

256 1,087 1,304 1,316

512 1,087 1,322 1,372

1024 1,228 1,332 1,358

2048 1,352 1,332 1,426

3072 1,370 1,350 1,416

4096 1,354 1,362 1,374

6144 1,345 1,356 1,384

8192 1,347 1,376 1,363

12288 1,360 1,415 1,361

16384 1,363 1,415 1,388

Table 12 shows that all proposed squaring algorithms
for 64-bit platforms are effectively than multiplying
algorithms. Single-threaded algorithm MCSQR is more
efficient than algorithm MC by 7%, and advantage
increases to 36% with the increase of the multipliers bit
size. The algorithm MCSQR2x is more efficient than
algorithm MC2x by 30%, and advantage increases to 41%
with the increase of the multipliers bit size. Multi-threaded
algorithm MCSQRMx is more effectively than algorithm
MCMx in average of 37%.

To compare the performance of software
implementations of squaring algorithms for 32 and 64 bit
platforms, the results obtained on 32-bit platform were
divided by results on 64-bit platform, for the same
algorithms. The comparison results are shown in Table 13
and Table 14.

Table 14 shows that, as in case of multiplication,
software implementations of squaring algorithms for 64-
bit platforms were more effective than the same
implementation for 32-bit platforms (up to 4 times for the
algorithm MCSQR, up to 3,6 times for the algorithm
MCSQR2x). Multithreaded multiplication and squaring
algorithms for 32-bit platforms was more effective than
for 64-bit, because there are not support 128-bit operations
in modern compilers, that’s why it require software
emulation such operations. MCSQRMx algorithm for 64-
bit platforms is more effectively on 128-512 bits
multipliers (4-6%), which are widely used in cryptography.

Table 13. Performance comparing of squaring software
implementations

BIT
SIZE

MCSQR x86/
MCSQR x64

MCSQR2x x86 /
MCSQR2x x64

MCSQRMx x86 /
MCSQRMx x64

128 4,214 1,084 1,057
256 3,196 1,022 1,040

512 3,300 1,227 1,053
1024 3,565 1,773 0,983

2048 3,738 2,632 0,918
3072 3,788 2,892 0,816

4096 3,833 3,329 0,754
6144 3,783 3,462 0,673
8192 3,816 3,572 0,541

12288 3,812 3,520 0,470
16384 3,814 3,610 0,414

Table 14. Performance comparing of multiplication software
implementations

BIT SIZE MC x86 /
MC x64

MC2X x86 /
MC2X x64

MCMX x86 /
MCMX x64

128 4,133 0,884 0,850
256 3,120 0,836 0,839
512 3,252 1,013 0,817

1024 3,236 1,713 0,773
2048 3,150 2,811 0,680

3072 3,159 3,164 0,614
4096 3,247 3,671 0,589
6144 3,232 3,845 0,523

8192 3,232 3,970 0,420
12288 3,218 3,871 0,364

16384 3,223 3,973 0,325
Theoretical estimation for MCSQR and MCSQR2x

confirmed by practical results of research. MCSQRMx
algorithm test results for 64-bit platforms indicate that
there are no operations performed on 128-bit data array.

5. Conclusions
Using previously proposed approaches to improve the

performance of the integers multiplication [4,5,6] have
developed squaring algorithms Modified Comba SQR,
Modified Comba SQR 2x and Modified Comba SQR Mx.

Theoretical calculations show that the parallel squaring
algorithms have a lower computational complexity,
primarily due to the parallel execution of the elementary
operations of addition and multiplication. Furthermore,
the use of 64-bit machine words reduces the number of
multiplications by 4 times.

Software implementations of squaring algorithms for
64-bit platforms were more effective than the same
implementation for 32-bit platforms (up to 4 times for the
algorithm MCSQR, up to 3,6 times for the algorithm
MCSQR2x). MCSQRMx algorithm for 64-bit platforms is
more effectively on 128-512 bits multipliers (4-6%),
which are widely used in cryptography. Multithreaded
multiplication and squaring algorithms for 32-bit platforms
was more effective than for 64-bit, because there are not
support 128-bit operations in modern compilers, that’s
why it require software emulation such operations.

Experimental researches have shown the effectiveness
of the proposed squaring algorithms over multiplication

17 Journal of Computer Networks

algorithms for 32-bit and 64-bit platforms. The theoretical
results are confirmed by practice.

The most perspective algorithm is MCSQRMx, which
shows significantly better results than other presented
algorithms. MCSQRMx has a high degree of parallelism,
which allows implementing it on various microprocessor
platforms, that’s why further research will focus on its
development using specialized software and hardware
(e.g., NVIDIA CUDA and OpenCL).

References
[1] Cohen H., Frey G., Avanzi R., Doche C., Lange T., Nguyen K.,

Vercauteren F. Handbook of Elliptic and Hyperelliptic Curve
Cryptography, Chapman & Hall/CRC, 2006, 843.

[2] Denis, T., Rose G. (2006). BigNum Math: Implementing
Cryptographic Multiple Precision Arithmetic, Elsevier/Syngress,
2006, 315.

[3] Hankerson, D., Menezes, A.J., Vanstone, S. Guide to Elliptic
Curve Cryptography, Springer-Verlag Professional Computing
Series, 2004, 332.

[4] Kovtun, V.Y., Okhrimenko, A.O. “Approaches for the
Parallelization of Software Implementation of Integer
Multiplication”, Radiotehnika. Vseukrainskij mezhvedomstvennyj
nauchno-tehnicheskij sbornik, 171, 123-132. 2012.

[5] Kovtun, V.Y., Okhrimenko, A.O. “Integer multiplication
algorithms with delayed carry for public-key cryptosystems”. In:
V.S. Ponomarenko (Eds.), Informacionnye tehnologi i sistemy v
upravlenii, obrazovanii, nauke. Kharkiv: Cifrova drukarnja №1.
69-82. 2013.

[6] Kovtun, V.Y., Okhrimenko, A.O., Nechiporuk, V.V. “Approaches
for the performance increasing of software implementation of
integer multiplication in prime fields”, Zashchita informacii, 1
(54), 68-75. 2012.

