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Abstract  Increasing amounts of information that needs to be protected put in claims specific requirements for 
information security systems. The main goal of this paper is to find ways to increase performance of cryptographic 
transformation with public key by increasing performance of integers squaring. Authors use delayed carry 
mechanism and approaches of effective parallelization for Comba multiplication algorithm, which was previously 
proposed by authors. They use the idea of carries accumulation by addition products of multiplying the relevant 
machine words in columns. As a result, it became possible to perform addition of such products in the column 
independently of each other. However, independent accumulation of products and carries require correction of the 
intermediate results to account for the accumulated carries. Due to the independence of accumulation in the columns, 
it became possible to parallelize the process of products accumulation that allowed formulating several approaches. 
In this paper received theoretical estimates of the computational complexity for proposed squaring algorithms. 
Software implementations of algorithms in C++ allowed receiving practical results of the performance, which are 
not contrary to theoretical estimates. The authors first proposed applying the method of delayed carry and 
parallelization techniques for squaring algorithms, which was previously proposed for integers multiplication. 
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1. Introduction 
Cryptographic transformation with public key (CTPK) 

are the basis for most modern cryptosystems. Increasing 
amounts of information that needs to be protected, makes 
specific demands for CTPK. Multiplicative operations 
[2,3], such as multiplication and squaring of integers, are 
the most frequently used in CTPK. One of the 
performance increasing approaches in CTPK is increasing 
the productivity of basic operations, such as multiplication, 
squaring, modular reduction and multiplicative inversion. 
Performance increasing approaches in CTPK by 
increasing the productivity of integer multiplication were 
reviewed in [4,5,6]. The main goal of this paper is to find 
ways of increasing performance of CTPK, by increasing 
productivity of squaring integers, using the delayed carry 
mechanism [5,6] and efficient parallelization approaches 
[4]. 

Squaring is a special case of multiplication where both 
multipliers are equal [1,3]. Show features of multiplication 
and squaring by considering "schoolbook" multiplication 
of two integers 123 and 456, Figure 1. 

Figure 1 shows that to calculate the product of two 
integers 123 and 456, it should complete 9 unique 
multiplication operations. Squaring using "schoolbook" 
multiplication allows some optimizations. Multiply 

integer 123 by itself, using "schoolbook" multiplication 
Figure 2. 

 

Figure 1. "Schoolbook" multiplication of two integers 

 

Figure 2. "Schoolbook" multiplication integer by itself 

Figure 2 shows how to multiply decimals in a different 
order, such as products in rows 0 and 2 in column 2 (3 * 1 
= 1 * 3), products in rows 0 and 1 in column 1 (3 * 2 = 2 * 
3) and products in rows 1 and 2 in column 3: (1 * 2 = 2 * 
1). Therefore, for squaring for n-digit number, there are 

only ( )2 2n n+  unique multiplications required ( 2n  

operations required for multiplication in common case). 
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Let x  be integer being squared, а kx  – k -th term of x . 
It is easy to notice features: 

1. In row k  the product in column 2k  has a 2
kx  term in 

it. In Figure 2 it 3 * 3, 2 * 2, 1 * 1. 
2. Every non-square term of a column will appear twice 

(product in column j  in row k , where 2j k≠  has a 
pair). In Figure 2 it 3 * 1 = 1 * 3, 3 * 2 = 2 * 3 and 1 
* 2 = 2 * 1. Every odd column is made-up entirely of 
product pairs. 

3. For row k , such as 0k ≠  and 1k n≠ − , the first 
unique product that is not a square, is located in the 
column 2 1k + . In Figure 2 it 2 * 1. 

2. Multiplication Algorithm Modified Comba 
In [5] proposed generalized modified algorithm Comba 

for integer multiplication – Modified Comba (MC), which 
uses the idea of delayed carry. The basis of the algorithm 
is loops (p.2 and p.3), and inner loops (p.2.1 and p.3.1). At 
the lowest level of the hierarchy, in loops p.2.1, p.3.1 there 
are multiplication and accumulation of delayed carry. 
Accumulated carry is taken into account in the final 
iterations of the loops p.2 and p.3. Using 2w-bit variables 
for storing w-bit variables eliminates the carry accounting 
of w-bit variable after each arithmetic operation. Carry 
accumulated in the higher part of the 2w-bit variable and 
is taken into account when needed, Figure 3. The 
generalized algorithm MC [5] for the w-bit systems is 
given below. 

Multiplication algorithm 1. Modified Comba 
INPUT: ( ),a b p∈GF , 

2
log wn a= , 2 1nk n= −  

OUTPUT: с a b= ⋅  

1. ( )2
0 0wr ← , ( )2

1 0wr ← , ( )2
2 0wr ← . 

2. For 0k ← , k n< , k + +  do 
2.1. For 0i ← , j k← , i k≤ , i + + , j − −  do 

2.1.1. ( )( ) ( ) ( )2 w ww
i juv a b← ⋅ . 

2.1.2. ( ) ( ) ( )2 2
0 0

w w wr r v← + , ( ) ( ) ( )2 2
1 1

w w wr r u← +  

2.2. ( ) ( )
( )

( )( )2 2 2
1 1 0hiw w w

wr r r← + , 

( ) ( )
( )

( )( )2 2 2
2 2 1hiw w w

wr r r← +  

2.3. ( )
( )

( )( )2
0loww w

wkc r← , ( )
( )

( )( )2 2
0 1loww w

wr r← , 

( )
( )

( )( )2 2
1 2loww w

wr r← , ( )2
2 0wr ← . 

3. For k n← , 1l ← , k nk< , k + + , l + +  do 
3.1. For i l← , j k l← − , i n< , i + + , j − −  do 

3.1.1. ( )( ) ( ) ( )2 w ww
i juv a b← ⋅ . 

3.1.2. ( ) ( ) ( )2 2
0 0

w w wr r v← + , ( ) ( ) ( )2 2
1 1

w w wr r u← +  

3.2. ( ) ( )
( )

( )( )2 2 2
1 1 0hiw w w

wr r r← + , 

( ) ( )
( )

( )( )2 2 2
22 2 1hiw w wr r r← +  

3.3. ( )
( )

( )( )2
0loww w

wkc r← , ( )
( )

( )( )2 2
0 1loww w

wr r← , 

( )
( )

( )( )2 2
1 2loww w

wr r← , ( )2
2 0wr ← . 

4. ( )
( )

( )( )2
2 0loww w

nkc r← . 

5. Return ( )c . 
The computational complexity of the MC algorithm: 

 3 12 2n
n

MC w w wsqr mul addI n I I + 
     

+= + , 

where n – number of w-bit machine words required to 
store the multiplier of given size, w

mulI  – a multiplication 

operation for w-bit words, 2w w
addI +  – an addition operation 

for 2w-bit and w-bit words. Assignment operations do not 
take into account in computational complexity of the 
algorithms.  

Using the idea of delayed carry it can independently 
produce addition of multiplication results corresponding 
by columns, that enables to perform the accumulation of 
sum of high and least significant bit in separate parallel 
threads. However, it is necessary to make an adjustment 
(account carry) ( )1 1 0Hir r r= + , ( )2 2 1Hir r r= +  and set 

result ( )0Lowic r=  after sum accumulation in each 
thread. Figure 3 and Figure 4 is a graphical interpretation 
of the MC algorithm, for n=3, where well-defined results 
addition for corresponding products in columns. 

a2 a1 a0

b2 b1 b0

Hi(a0*b0) Lo(a0*b0)

Hi(a2*b0) Lo(a2*b0)

c2 c1 c0

a

b

c

Hi(a1*b0) Lo(a1*b0)

Hi(a0*b1) Lo(a0*b1)

Hi(a0*b2) Lo(a0*b2)

Hi(a1*b1) Lo(a1*b1)

r0r1

r2

r0r1

r0r1

r2

r0r1

r0r1

r0r1

r2

 

Figure 3. Graphical interpretation of loop 2 in MC algorithm 

c3c4c5

Hi(a2*b1) Lo(a2*b1)

Hi(a1*b2) Lo(a1*b2)

Hi(a2*b2) Lo(a2*b2)

r0r1

r2

r0r1

r0r1

r2

c 

Figure 4. Graphical interpretation of loop 3 in MC algorithm 

3. Squaring Algorithms 

3.1. Squaring algorithm Modified Comba SQR 
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Using delayed carry mechanism [5,6] and approaches to 
parallelization [4,5], were offer three squaring algorithms 
that take account the above features. Consider squaring 
features, the MC algorithm was modified in inner loops of 
delayed carry accumulation (p.2.1 and p.3.1), and added 
an additional check to avoid duplication in the sum 
accumulation (p.2.1.2 and p.3.1.2 ). 

Modified Comba SQR (MCSQR) is squaring algorithm 
for w-bit machine words, based on multiplication 
algorithm MC [4,5,6]. 

Squaring algorithm 1. Modified Comba SQR. 

INPUT: ( )a p∈GF , 
2

log wn a= , 2 1nk n= −  

OUTPUT: 
2с a=  

1. ( )2
0 0wr ← , ( )2

1 0wr ← , ( )2
2 0wr ← . 

2. For 0k ← , k n< , k + +  do 
2.1. For 0i ← , j k← , i j≤ , i + + , j − −  do 

2.1.1. ( )( ) ( ) ( )22 w w w
i ju a a← ⋅ . 

2.1.2. if ( )i j<  then ( ) ( ) ( )( )2 2
0 0 1w w wr r u← + << , 

( ) ( ) ( )( ) ( ) ( )( )2 2
1 1 1 1w w w wr r u or u w

 
← + << >> − 

 
; 

else ( ) ( ) ( )2 2
0 0

w w wr r u← + , ( ) ( ) ( )2 2
1 1

w w wr r u← +  

2.2. ( ) ( )
( )

( )( )2 2 2
1 1 0hiw w w

wr r r← + , 

( ) ( )
( )

( )( )2 2 2
2 2 1hiw w w

wr r r← +   

2.3. ( )
( )

( )( )2
0loww w

wkc r← , ( )
( )

( )( )2 2
0 1loww w

wr r← , 

( )
( )

( )( )2 2
1 2loww w

wr r← , ( )2
2 0wr ← . 

3. For k n← , 1l ← , k nk< , k + + , l + +  do 
3.1. For i l← , j k l← − , i j≤ , i + + , j − −  do 

3.1.1. ( )( ) ( ) ( )22 w w w
i ju a a← ⋅ . 

3.1.2. if ( )i j<  then ( ) ( ) ( )( )2 2
0 0 1w w wr r u← + << , 

( ) ( ) ( )( ) ( ) ( )( )2 2
1 1 1 1w w w wr r u or u w

 
← + << >> − 

 
; 

else ( ) ( ) ( )2 2
0 0

w w wr r u← + , ( ) ( ) ( )2 2
1 1

w w wr r u← +  

3.2. ( ) ( )
( )

( )( )2 2 2
1 1 0hiw w w

wr r r← + , 

( ) ( )
( )

( )( )2 2 2
22 2 1hiw w wr r r← +   

3.3. ( )
( )

( )( )2
0loww w

wkc r← , ( )
( )

( )( )2 2
0 1loww w

wr r← , 

( )
( )

( )( )2 2
1 2loww w

wr r← , ( )2
2 0wr ← . 

4. ( )
( )

( )( )2
2 0loww w

nkc r← . 

5. Return ( )c . 
The computational complexity of the MCSQR 

algorithm: 

 2 23 1 13
2

MCSQR w w w w
sqr mul add shift

n nI n I I I
n n

+ + −    = + +    
    

 

where n – number of w-bit machine words required to 
store the multiplier of given size, w

mulI  – a multiplication 

operation for w-bit words, 2w w
addI +  – an addition operation 

for 2w-bit and w-bit words, w
shiftI  – a word shift operation. 

Assignment operations do not take into account in 
computational complexity of the algorithms. 

The evaluation results of computational complexity of 
MCSQR for different bit length multipliers are shown in 
Table 1 and Table 2 (MUL, ADD and SHIFT – amount of 
required multiplication, addition and shift operations). 

Table 1. The number of operations for MCSQR (w=32 bit) 

BIT SIZE 
MCSQR, w=32 bit 

MUL ADD SHIFT 
128 16 52 18 
256 64 200 84 
512 256 784 360 
1024 1024 3104 1488 
2048 4096 12352 6048 
3072 9216 27744 13680 
4096 16384 49280 24384 
6144 36864 110784 55008 
8192 65536 196864 97920 

12288 147456 442752 220608 
16384 262144 786944 392448 

Table 2. The number of operations for MCSQR (w=64 bit) 

BIT SIZE 
MCSQR, w=64 bit 

MUL ADD SHIFT 
128 4 14 3 
256 16 52 18 
512 64 200 84 
1024 256 784 360 
2048 1024 3104 1488 
3072 2304 6960 3384 
4096 4096 12352 6048 
6144 9216 27744 13680 
8192 16384 49280 24384 

12288 36864 110784 55008 
16384 65536 196864 97920 

Table 2 shows that using 64-bit machine words in 
MCSQR algorithm can significantly reduce the number of 
necessary operations (including reducing the number of 
multiplications by 4 times). 

3.2. Squaring Algorithms with Parallelization 
Techniques 

The delayed carry mechanism allows formulating 
several approaches to the MCSQR parallelization: 
•  Parallel execution (in two parallel threads) of loops 

in the step 2 and 3 with further final result correction. 
•  Parallel execution (number of parallel threads) of 

iterations in loops in step 2 and 3 with further 
intermediate results (from parallel threads) merging. 

3.2.1. Algorithm Modified Comba SQR 2x 
Algorithm with two parallel processing threads and 

paralleling features of the MCSQR algorithm was 
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proposed. Modified Comba SQR 2x (MCSQR2x) is 
squaring algorithm for w-bit platforms, based on 
multiplication algorithm Modified Comba 2x (MC2x) [4,5] 
with two parallel processing threads. 

Squaring algorithm 2. Modified Comba SQR 2x 
with two parallel processing threads: 

INPUT: ( )a p∈GF , 
2

log wn a= , 2 1nk n= −  

OUTPUT: 
2с a=  

1. #pragma omp parallel sections begin 
1.1. #pragma omp section begin 

1.1.1. ( )2
0 0wrl ← , ( )2

1 0wrl ← , ( )2
2 0wrl ← . 

1.1.2. For 0k ← , k n< , k + +  do 
1.1.2.1. For 0i ← , j k← , i j≤ , i + + , j − −  do 

1.1.2.1.1. ( )( ) ( )2 ( )2 w w w
i ju a a← ⋅ . 

1.1.2.1.2. if ( )i j<  then ( ) ( ) ( )( )2 2
0 0 1w w wrl rl u← + << , 

( ) ( ) ( )( ) ( ) ( )( )2 2
1 1 1 1w w w wrl rl u or u w

 
← + << >> − 

 
; 

else ( ) ( ) ( )2 2
0 0

w w wrl rl u← + , ( ) ( ) ( )2 2
1 1

w w wrl rl u← +  

1.1.2.2. ( ) ( )
( )

( )( )2 2 2
1 1 0hiw w w

wrl rl rl← + , 

( ) ( )
( )

( )( )2 2 2
2 2 1hiw w w

wrl rl rl← +    

1.1.2.3. ( )
( )

( )( )2
0loww w

wkc rl← , 

( )
( )

( )( )2 2
0 1loww w

wrl rl← ,  

( )
( )

( )( )2 2
1 2loww w

wrl rl← , ( )2
2 0wrl ← . 

1.1.3. ( ) ( )2 2
0 0

w wr rl← . 
#pragma omp section end 
1.2. #pragma omp section begin 

1.2.1. ( )2
0 0wrl ← , ( )2

1 0wrl ← , ( )2
2 0wrl ← . 

1.2.2. For k n← , 1l ← , k nk< , k + + , l + +  do 
1.2.2.1. For i l← , 1j n← − , i j≤ , i + + , j − −  do 

1.2.2.1.1. ( )( ) ( )2 ( )2 w w w
i ju a a← ⋅ . 

1.2.2.1.2. if ( )i j<  then ( ) ( ) ( )( )2 2
0 0 1w w wrl rl u← + << , 

( ) ( ) ( )( ) ( ) ( )( )2 2
1 1 1 1w w w wrl rl u or u w

 
← + << >> − 

 
; 

else ( ) ( ) ( )2 2
0 0

w w wrl rl u← + , ( ) ( ) ( )2 2
1 1

w w wrl rl u← +  

1.2.2.2. ( ) ( )
( )

( )( )2 2 2
1 1 0hiw w w

wrl rl rl← + , 

( ) ( )
( )

( )( )2 2 2
2 2 1hiw w w

wrl rl rl← +   

1.2.2.3. ( )
( )

( )( )2
0loww w

wkc rl← , 

( )
( )

( )( )2 2
0 1loww w

wrl rl← ,  

( )
( )

( )( )2 2
1 2loww w

wrl rl← , ( )2
2 0wrl ← . 

#pragma omp section end 
#pragma omp parallel sections end 
2. For k n← , k nk< , k + +  do 

2.1. ( ) ( ) ( )2 2
0 0

w w w
kr r c← + .  

2.2. ( )
( )

( )( )2
0loww w

wkc r← . 

2.3. ( )
( )( ) ( )

( )( )2 2
0 0low hiw w

w wr r← .  

3. ( ) ( )
( )

( )( )2
0loww w w

wnk nkc c r← + . 

4. Return ( )c . 
The computational complexity of the MCSQR2x 

algorithm: 

 

2

2

2
2

12
2

max 2 ,
13

2

MCSQR x
sqr

w w w
mul add

w wn
add

w
shift

I

nI I
n

n I
n I

n

+

+

   +  +    
     = +    − +         

 

 

2

2
2

2
2

12
2

2
13

2

w w w
mul add

w wn
add

w
shift

w w wn
add add

nI I
n

n I
n I

n

I I

+

+

+

  +  +    
      +    − +         

+ +

 

where n – number of w-bit machine words required to 
store the multiplier of given size, w

mulI  – a multiplication 

operation for w-bit words, 2w w
addI +  – an addition operation 

for 2w-bit and w-bit words, w
shiftI  – a shift operation. 

Assignment operations do not take into account in 
computational complexity of the algorithms. 

The evaluation results of computational complexity of 
MCSQR2x for different bit length multipliers are shown 
in Table 3 and Table 4 (MUL, ADD and SHIFT – amount 
of required multiplication, addition and shift operations): 

Table 3. The number of operations for MCSQR2X (w=32 bit) 

BIT SIZE 
MCSQR2x, w=32 bit 

MUL ADD SHIFT 

128 8 19 9 

256 32 53 42 

512 128 169 180 

1024 512 593 744 

2048 2048 2209 3024 

3072 4608 4849 6840 

4096 8192 8513 12192 

6144 18432 18913 27504 

8192 32768 33409 48960 

12288 73728 74689 110304 

16384 131072 132353 196224 
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Table 4. The number of operations for MCSQR2x (w=64 bit) 

BIT SIZE 
MCSQR2x, w=64 bit 

MUL ADD SHIFT 
128 2 8 2 
256 8 19 9 
512 32 53 42 
1024 128 169 180 
2048 512 593 744 
3072 1152 1273 1692 
4096 2048 2209 3024 
6144 4608 4849 6840 
8192 8192 8513 12192 

12288 18432 18913 27504 
16384 32768 33409 48960 

3.2.2. Algorithm Modified Comba SQR Mx 
Modified Comba SQR Mx (MCSQRMx) is the 

squaring algorithm for w-bit platforms, based on 
multiplication algorithm Modified Comba Mx (MCMx) 
with multiple parallel processing threads [4,5] : 

Squaring algorithm 3. Modified Comba SQR Mx 
with multiple parallel processing threads 
INPUT: ( )a p∈GF , 

2
log wn a= , 2 1nk n= −  

OUTPUT: 
2с a=  

1. 1l ← . 

2. Arrays ( )0 w
ir  and ( )1 w

ir , 0,i nk= . 
3. #pragma omp parallel begin 
4. #pragma omp for nowait begin  
4.1. For 0k ← , k n< , k + +  do 

4.1.1. ( )
0 0wrl ← , ( )

1 0wrl ← . 
4.1.2. For 0i ← , j k← , i j≤ , i + + , j − −  do 

4.1.2.1. ( )( ) ( )2 ( )2 w w w
i ju a a← ⋅ . 

4.1.2.2. if ( )i j<  then ( ) ( ) ( )( )2 2
0 0 1w w wrl rl u← + << , 

( ) ( ) ( )( ) ( ) ( )( )2 2
1 1 1 1w w w wrl rl u or u w

 
← + << >> − 

 
; 

else ( ) ( ) ( )2 2
0 0

w w wrl rl u← + , ( ) ( ) ( )2 2
1 1

w w wrl rl u← +  

4.1.3. ( ) ( )2 2
00 w w

kr rl← , ( ) ( )2 2
11 w w

kr rl←  

#pragma omp for end 
5. #pragma omp for nowait begin 
5.1. For k n← , k nk< , k + +  do 

5.1.1. ( )2
0 0wrl ← , ( )2

1 0wrl ← . 
5.1.2. For i l← , 1j n← − , i j≤ , i + + , j − −  do 

5.1.2.1. ( )( ) ( ) ( )22 w w w
i ju a a← ⋅ . 

5.1.2.2. if ( )i j<  then ( ) ( ) ( )( )2 2
0 0 1w w wrl rl u← + << , 

( ) ( ) ( )( ) ( ) ( )( )2 2
1 1 1 1w w w wrl rl u or u w

 
← + << >> − 

 
; 

else ( ) ( ) ( )2 2
0 0

w w wrl rl u← + , ( ) ( ) ( )2 2
1 1

w w wrl rl u← +  

5.1.3. ( ) ( )2 2
00 w w

kr rl← , ( ) ( )2 2
11 w w

kr rl←  

5.1.4. l + + . 
#pragma omp for end 
#pragma omp parallel end 

6. ( )2 0wr ←  

7. For 0k ← , k nk< , k + +  do 

7.1. ( ) ( )2 2
0 0w w

krl r← . 

7.2. ( ) ( ) ( )2 2 2
0 0

w w wrl rl r← + . 

7.3. ( )
( )

( )( )2
0loww w

wkc rl← . 

7.4. ( ) ( )
( )

( )( )2 2 2
01 hiw w w

wkr r rl← + . 

8. ( )
( )

( )( )2loww w
wnkc r← . 

9. Return ( )c . 
The computational complexity of the MCSQRMx 

algorithm: 

 

( )

2

2

2

2
2

12
2

13
2

12
2

2 1 3
13

2

w w w
mul add

MCSQRMx n n
mul Z

w
shift

w w w
mul add

w wn n
addZ

w
shift

nI I
n

I
n I

n

nI I
n

n I
n I

n

+

+

+

  +  +   
    =    − +   

   
  +  +   

    + + −   − +   
   

 

 
where Z – parallel threads count, n – number of w-bit 
machine words required to store the multiplier of given 
size, w

mulI  – a multiplication operation for w-bit words, 
2w w
addI +  – an addition operation for 2w-bit and w-bit words, 
w
shiftI  – a word shift operation. Assignment operations do 

not take into account in computational complexity of the 
algorithms. 

The evaluation results of computational complexity of 
MCSQR2x for different bit length multipliers are shown 
in Table 5 and Table 6 for Z=4 (MUL, ADD and SHIFT – 
amount of required multiplication, addition and shift 
operations): 

Table 5. The number of operations for MCSQRMX (w=32 bit) 

BIT SIZE 
MCSQRMx, w=32 bit 

MUL ADD SHIFT 
128 4 26 5 
256 16 63 21 
512 64 161 90 
1024 256 453 372 
2048 1024 1421 1512 
3072 2304 2901 3420 
4096 4096 4893 6096 
6144 9216 10413 13752 
8192 16384 17981 24480 

12288 36864 39261 55152 
16384 65536 68733 98112 
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Table 6. The number of operations for MCSQRMx (w=64 bit) 

BIT SIZE 
MCSQRMx, w=64 bit 

MUL ADD SHIFT 

128 1 11 1 

256 4 26 5 

512 16 63 21 

1024 64 161 90 

2048 256 453 372 

3072 576 873 846 

4096 1024 1421 1512 

6144 2304 2901 3420 

8192 4096 4893 6096 

12288 9216 10413 13752 

16384 16384 17981 24480 

Theoretical calculations show that the parallel squaring 
algorithms have a lower computational complexity, 
primarily due to the parallel execution of the elementary 
operations of addition and multiplication. Furthermore, 
the use of 64-bit machine words reduces the number of 
multiplications by 4 times. 

4. Field Research  
Squaring algorithms MCSQR, MCSQR2x and 

MCSQRMx as previously proposed algorithms for 
multiplication MC, MC2x and MCMx (Kovtun et al., 
2012), (Kovtun and Okhrimenko, 2012), (Kovtun and 
Okhrimenko, 2013) have been implemented in software in 
C++ using the Intel C + + Compiler XE 13. The proposed 
algorithms have been implemented for 32- and 64-bit 
platforms. Measurements were performed on a computer 
running Microsoft Windows 7 Ultimate x64 SP1 and the 
processor Intel Core i5-3570 (6M Cache, 3.40 GHz) with 
four physical cores. For multiplication of two 64-bit 
integers, have been used the built-in compiler intrinsic 
function _umul128, (128-bit result of the multiplication is 
represented as an array of 64-bit words). Comparison of 
the results occurred by comparing the average time of 
multiplication operations in software implementation MC, 
MC2x and MCMx and the proposed algorithms squaring 
MCSQR, MCSQR2x and MCSQRMx, for 1 million 
iterations. The experimental results for 32-bit platforms 
are shown in Table 7 and Table 8. 

Table 7. The experimental results for squaring (w=32 bit) 
BIT SIZE MCSQR, ms MCSQR2x, ms MCSQRMx, ms 

128 59 681 726 

256 147 702 750 

512 495 858 821 

1024 1722 1576 936 

2048 6490 4056 1432 

3072 14305 8143 2196 

4096 24992 13688 3023 

6144 54928 29593 5519 

8192 97266 51542 7438 

12288 214921 111930 13960 

16384 378488 196768 21359 

Table 8. The experimental results for multiplication (w=32 bit) 
BIT SIZE MC, ms MC2x, ms MCMx, ms 

128 62 723 768 

256 156 749 796 

512 530 936 874 

1024 1919 2028 999 

2048 7394 5772 1513 

3072 16349 12028 2340 

4096 28673 20560 3245 

6144 63133 44569 5938 

8192 110979 78842 7878 

12288 246730 174174 14708 

16384 435943 306416 23306 

It is proposed to normalize the results by dividing the 
results of MC, MC2x and MCMx to results MCSQR, 
MCSQR2x and MCSQRMx. The normalized results are 
shown in Table 9. 

Table 9. Normalized results of experiments for w = 32 bit 
BIT 

SIZE 
MC/ 

MCSQR 
MC2x/ 

MCSQR2x 
MCMx/ 

MCSQRMx 
128 1,051 1,062 1,058 

256 1,061 1,067 1,061 
512 1,071 1,091 1,065 

1024 1,114 1,287 1,067 
2048 1,139 1,423 1,057 

3072 1,143 1,477 1,066 
4096 1,147 1,502 1,073 
6144 1,149 1,506 1,076 

8192 1,141 1,530 1,059 
12288 1,148 1,556 1,054 

16384 1,152 1,557 1,091 
Table 9 shows that all proposed squaring algorithms for 

32-bit platforms are effectively than multiplying 
algorithms. Single-threaded algorithm MCSQR is more 
efficient than algorithm MC by 5%, and advantage 
increases to 15% with the increase of the multipliers bit 
size. The algorithm MCSQR2x is more efficient than 
algorithm MC2x by 6%, and advantage increases to 56% 
with the increase of the multipliers bit size. Multi-threaded 
algorithm MCSQRMx is more effectively than algorithm 
MCMx by 6%, and advantage increases to 9% with the 
increase of the multipliers bit size. 

The experimental results for 64-bit platforms are shown 
in Table 10 and Table 11. 

Table 10. The experimental results for squaring (w=64 bit) 
BIT SIZE MCSQR, ms MCSQR2x, ms MCSQRMx, ms 

128 14 628 687 
256 46 687 721 
512 150 699 780 
1024 483 889 952 
2048 1736 1541 1560 
3072 3776 2816 2690 
4096 6521 4112 4009 
6144 14521 8549 8205 
8192 25490 14430 13759 

12288 56379 31794 29718 
16384 99232 54507 51651 
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Table 11. The experimental results for multiplication (w=64 bit) 
BIT SIZE MC, ms MC2x, ms MCMx, ms 

128 15 818 903 

256 50 896 949 
512 163 924 1070 

1024 593 1184 1293 
2048 2347 2053 2224 
3072 5175 3801 3810 

4096 8830 5600 5507 
6144 19532 11590 11357 

8192 34335 19858 18752 
12288 76674 44991 40435 
16384 135252 77127 71682 

It is proposed to normalize the results for 64-bit 
platforms by dividing the results of MC, MC2x and 
MCMx to results MCSQR, MCSQR2x and MCSQRMx 
too. The normalized results are shown in Table 12. 

Table 12. Normalized results of experiments for w = 64 bit 
BIT 

SIZE 
MC/ 

MCSQR 
MC2x/ 

MCSQR2x 
MCMx/ 

MCSQRMx 
128 1,071 1,303 1,314 

256 1,087 1,304 1,316 

512 1,087 1,322 1,372 

1024 1,228 1,332 1,358 

2048 1,352 1,332 1,426 

3072 1,370 1,350 1,416 

4096 1,354 1,362 1,374 

6144 1,345 1,356 1,384 

8192 1,347 1,376 1,363 

12288 1,360 1,415 1,361 

16384 1,363 1,415 1,388 

Table 12 shows that all proposed squaring algorithms 
for 64-bit platforms are effectively than multiplying 
algorithms. Single-threaded algorithm MCSQR is more 
efficient than algorithm MC by 7%, and advantage 
increases to 36% with the increase of the multipliers bit 
size. The algorithm MCSQR2x is more efficient than 
algorithm MC2x by 30%, and advantage increases to 41% 
with the increase of the multipliers bit size. Multi-threaded 
algorithm MCSQRMx is more effectively than algorithm 
MCMx in average of 37%. 

To compare the performance of software 
implementations of squaring algorithms for 32 and 64 bit 
platforms, the results obtained on 32-bit platform were 
divided by results on 64-bit platform, for the same 
algorithms. The comparison results are shown in Table 13 
and Table 14. 

Table 14 shows that, as in case of multiplication, 
software implementations of squaring algorithms for 64-
bit platforms were more effective than the same 
implementation for 32-bit platforms (up to 4 times for the 
algorithm MCSQR, up to 3,6 times for the algorithm 
MCSQR2x). Multithreaded multiplication and squaring 
algorithms for 32-bit platforms was more effective than 
for 64-bit, because there are not support 128-bit operations 
in modern compilers, that’s why it require software 
emulation such operations. MCSQRMx algorithm for 64-
bit platforms is more effectively on 128-512 bits 
multipliers (4-6%), which are widely used in cryptography. 

Table 13. Performance comparing of squaring software 
implementations 

BIT 
SIZE 

MCSQR x86/ 
MCSQR x64 

MCSQR2x x86 / 
MCSQR2x x64 

MCSQRMx x86 / 
MCSQRMx x64 

128 4,214 1,084 1,057 
256 3,196 1,022 1,040 

512 3,300 1,227 1,053 
1024 3,565 1,773 0,983 

2048 3,738 2,632 0,918 
3072 3,788 2,892 0,816 

4096 3,833 3,329 0,754 
6144 3,783 3,462 0,673 
8192 3,816 3,572 0,541 

12288 3,812 3,520 0,470 
16384 3,814 3,610 0,414 

Table 14. Performance comparing of multiplication software 
implementations 

BIT SIZE MC x86 / 
MC x64 

MC2X x86 / 
MC2X x64 

MCMX x86 / 
MCMX x64 

128 4,133 0,884 0,850 
256 3,120 0,836 0,839 
512 3,252 1,013 0,817 

1024 3,236 1,713 0,773 
2048 3,150 2,811 0,680 

3072 3,159 3,164 0,614 
4096 3,247 3,671 0,589 
6144 3,232 3,845 0,523 

8192 3,232 3,970 0,420 
12288 3,218 3,871 0,364 

16384 3,223 3,973 0,325 
Theoretical estimation for MCSQR and MCSQR2x 

confirmed by practical results of research. MCSQRMx 
algorithm test results for 64-bit platforms indicate that 
there are no operations performed on 128-bit data array. 

5. Conclusions 
Using previously proposed approaches to improve the 

performance of the integers multiplication [4,5,6] have 
developed squaring algorithms Modified Comba SQR, 
Modified Comba SQR 2x and Modified Comba SQR Mx. 

Theoretical calculations show that the parallel squaring 
algorithms have a lower computational complexity, 
primarily due to the parallel execution of the elementary 
operations of addition and multiplication. Furthermore, 
the use of 64-bit machine words reduces the number of 
multiplications by 4 times. 

Software implementations of squaring algorithms for 
64-bit platforms were more effective than the same 
implementation for 32-bit platforms (up to 4 times for the 
algorithm MCSQR, up to 3,6 times for the algorithm 
MCSQR2x). MCSQRMx algorithm for 64-bit platforms is 
more effectively on 128-512 bits multipliers (4-6%), 
which are widely used in cryptography. Multithreaded 
multiplication and squaring algorithms for 32-bit platforms 
was more effective than for 64-bit, because there are not 
support 128-bit operations in modern compilers, that’s 
why it require software emulation such operations.  

Experimental researches have shown the effectiveness 
of the proposed squaring algorithms over multiplication 
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algorithms for 32-bit and 64-bit platforms. The theoretical 
results are confirmed by practice. 

The most perspective algorithm is MCSQRMx, which 
shows significantly better results than other presented 
algorithms. MCSQRMx has a high degree of parallelism, 
which allows implementing it on various microprocessor 
platforms, that’s why further research will focus on its 
development using specialized software and hardware 
(e.g., NVIDIA CUDA and OpenCL). 
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